1,111 research outputs found

    A comparison of methods to evaluate energy expenditure of incubating wandering albatrosses

    Get PDF
    Measurements of incubation energetics can vary depending on the method used to measure metabolism of an incubating bird. Therefore, we evaluated the energy expenditure of six male and four female wandering albatrosses (Diomedea exulans Linnaeus) using doubly labeled water (DLW), the rate of mass loss, and estimates of metabolic water production derived from water influx rate (WIR). Incubation metabolic rates (IMR) determined with DLW ( 169 ± 21 kJ kg d SD) were significantly lower than estimates derived from mass loss ( 277 ± 46kJ kg d SD) and WIR ( males=289 ± 60 kJ kg d vs. females = 400 ± 69 kJ kg d SD). Estimates of IMR from f WIR were similar to IMR (305 ± 39 kJ kg d SD) determined by respirometry in a previous study, and IMR from DLW was similar to estimates based on heart rate (HR; 147 ± 26 kJ d SD) determined in another study. Ap- 147 26 plying the different measurements of IMR to construct an en-ergy budget, we estimate that a breeding pair of wandering albatrosses spends 124--234 MJ to incubate the egg for 78 d. Finally, IMRs determined with DLW and HR were similar

    Validation of water flux and body composition in Glaucous gulls (Larus hyperboreus)

    Get PDF
    Water influx rates (WIR) measured with tritiated water dilution were compared with direct measures of water and energy intake in glaucous gulls (Larus hyperboreus). Total body water (TBW) measured isotopically was also compared with TBW determined by body composition analysis (BCA) of the same birds. Seventeen wild gulls were captured and studied in outdoor enclosures at Ny-Ålesund, Svalbard, in July 2002. Gulls were hand-fed known quantities of Arctic cod (Boreogadus saida) or given water on the basis of one of four experimental treatments: (A) fasting, (B) fish only, (C) water only, or (D) fish and water. Water and energy content of Arctic cod was also determined. WIR of gulls (after subtracting metabolic water production) in treatments A, B, C, and D were 0, 101 ± 5, 62 ± 19, and 122 ± 21 SD g d-1, respectively. Measured water intake in each group was 0, 111 ± 2, 64 ± 3, and 134 ± 15 SD g d-1, respectively. On average, WIR underestimated measured water intake in each group. Errors were lowest but most variable for gulls fed water only (-2.2% ± 32.8%) compared with gulls fed fish only (-9.0% ± 5.4%) or fish and water (-9.0% ± 7.0%). Compared with measured water intake, errors in WIR were relatively low overall (-6.9% ± 17.4%) and comparable to previous validation studies. The difference in TBW determined by BCA versus isotopic dilution ranged between -1.02% and +8.59% of mass. On average, TBW measured isotopically (632 ± 24 g kg-1) overestimated true body water by a factor of 1.033

    Corticosterone and foraging behaviour in a pelagic seabird

    Get PDF
    Because endocrine mechanisms are thought to mediate behavioral responses to changes in the environment, examining these mechanisms is essential for understanding how long-lived seabirds adjust their foraging decisions to contrasting environmental conditions in order to maximize their fitness. In this context, the hormone corticosterone (CORT) deserves specific attention because of its major connections with locomotor activities. We examined for the first time the relationships between individual CORT levels and measurements of foraging success and behavior using satellite tracking and blood sampling from wandering albatrosses (Diomedea exulans) before (pretrip CORT levels) and after (posttrip CORT levels) foraging trips during the incubation period. Plasma CORT levels decreased after a foraging trip, and the level of posttrip CORT was negatively correlated with individual foraging success, calculated as total mass gain over a foraging trip. Pretrip CORT levels were not linked to time spent at sea but were positively correlated with daily distance traveled and maximum range at sea. In this study, we were able to highlight the sensitivity of CORT levels to variation in energy intake, and we showed for the first time that individual CORT levels can be explained by variation in foraging success. Relationships between pretrip CORT levels and daily distance traveled and maximum range were independent of pretrip body mass, suggesting that slight elevations in pretrip CORT levels might facilitate locomotor activity. However, because both foraging behavior and pretrip CORT levels could be affected by individual quality, future experimental studies including manipulation of CORT levels are needed to test whether CORT can mediate foraging decisions according to foraging conditions

    The Exocyst Subunit Sec6 Interacts with Assembled Exocytic SNARE Complexes

    Get PDF
    In eukaryotic cells, membrane-bound vesicles carry cargo between intracellular compartments, to and from the cell surface, and into the extracellular environment. Many conserved families of proteins are required for properly localized vesicle fusion, including the multisubunit tethering complexes and the SNARE complexes. These protein complexes work together to promote proper vesicle fusion in intracellular trafficking pathways. However, the mechanism by which the exocyst, the exocytosis-specific multisubunit tethering complex, interacts with the exocytic SNAREs to mediate vesicle targeting and fusion is currently unknown. We have demonstrated previously that the Saccharomyces cerevisiae exocyst subunit Sec6 directly bound the plasma membrane SNARE protein Sec9 in vitro and that Sec6 inhibited the assembly of the binary Sso1-Sec9 SNARE complex. Therefore, we hypothesized that the interaction between Sec6 and Sec9 prevented the assembly of premature SNARE complexes at sites of exocytosis. To map the determinants of this interaction, we used cross-linking and mass spectrometry analyses to identify residues required for binding. Mutation of residues identified by this approach resulted in a growth defect when introduced into yeast. Contrary to our previous hypothesis, we discovered that Sec6 does not change the rate of SNARE assembly but, rather, binds both the binary Sec9-Sso1 and ternary Sec9-Sso1-Snc2 SNARE complexes. Together, these results suggest a new model in which Sec6 promotes SNARE complex assembly, similar to the role proposed for other tether subunit-SNARE interactions

    In-Vitro Sorbent-Mediated Removal of Edoxaban from Human Plasma and Albumin Solution

    Get PDF
    BACKGROUND AND OBJECTIVE: Based on previous experience of sorbent-mediated ticagrelor, dabigatran, and radiocontrast agent removal, we set out in this study to test the effect of two sorbents on the removal of edoxaban, a factor Xa antagonist direct oral anticoagulant. METHODS: We circulated 100 mL of edoxaban solution during six first-pass cycles through 40-mL sorbent columns (containing either CytoSorb in three passes or Porapak Q 50-80 mesh in the remaining three passes) during experiments using human plasma and 4% bovine serum albumin solution as drug vehicles. Drug concentration was measured by liquid chromatography-tandem mass spectrometry. RESULTS: Edoxaban concentration in two experiments performed with human plasma dropped from 276.8 to 2.7 ng/mL and undetectable concentrations, respectively, with CytoSorb or Porapak Q 50-80 mesh (p = 0.0031). The average edoxaban concentration decreased from 407 ng/mL +/- 216 ng/mL to 3.3 ng/mL +/- 7 ng/mL (p = 0.017), for a removal rate of 99% across all six samples of human plasma (two samples) and bovine serum albumin solution (four samples). In four out of the six adsorbed samples, the drug concentrations were undetectable. CONCLUSION: Sorbent-mediated technology may represent a viable pathway for edoxaban removal from human plasma or albumin solution

    Bringing home the trash: Do colony-based differences in foraging distribution lead to increased plastic ingestion in Laysan albatrosses?

    Get PDF
    When searching for prey, animals should maximize energetic gain, while minimizing energy expenditure by altering their movements relative to prey availability. However, with increasing amounts of marine debris, what once may have been ‘optimal’ foraging strategies for top marine predators, are leading to sub-optimal diets comprised in large part of plastic. Indeed, the highly vagile Laysan albatross (Phoebastria immutabilis) which forages throughout the North Pacific, are well known for their tendency to ingest plastic. Here we examine whether Laysan albatrosses nesting on Kure Atoll and Oahu Island, 2,150 km apart, experience different levels of plastic ingestion. Twenty two geolocators were deployed on breeding adults for up to two years. Regurgitated boluses of undigestable material were also collected from chicks at each site to compare the amount of plastic vs. natural foods. Chicks from Kure Atoll were fed almost ten times the amount of plastic compared to chicks from Oahu despite boluses from both colonies having similar amounts of natural food. Tracking data indicated that adults from either colony did not have core overlapping distributions during the early half of the breeding period and that adults from Kure had a greater overlap with the putative range of the Western Garbage Patch corroborating our observation of higher plastic loads at this colony. At-sea distributions also varied throughout the year suggesting that Laysan albatrosses either adjusted their foraging behavior according to constraints on time away from the nest or to variation in resources. However, in the non-breeding season, distributional overlap was greater indicating that the energy required to reach the foraging grounds was less important than the total energy available. These results demonstrate how a marine predator that is not dispersal limited alters its foraging strategy throughout the reproductive cycle to maximize energetic gain and how this has led to differences in plastic ingestion

    Heart rate and energy expenditure of incubating wandering albatrosses: basal levels, natural variation, and the effects of human disturbance

    Get PDF
    We studied the changes in heart rate (HR) associated with metabolic rate of incubating and resting adult wandering albatrosses (Diomedea exulans) on the Crozet Islands. Metabolic rates of resting albatrosses fitted with external HR recorders were measured in a metabolic chamber to calibrate the relationship between HR and oxygen consumption (V̇O2) (V̇O2=0.074×HR+0.019, r2=0.567, P\u3c0.001, where V̇O2 is in ml kg–1 min–1 and HR is in beats min–1). Incubating albatrosses were then fitted with HR recorders to estimate energy expenditure of albatrosses within natural field conditions. We also examined the natural variation in HR and the effects of human disturbance on nesting birds by monitoring the changes in HR. Basal HR was positively related to the mass of the individual. The HR of incubating birds corresponded to a metabolic rate that was 1.5-fold (males) and 1.8-fold (females) lower than basal metabolic rate (BMR) measured in this and a previous study. The difference was probably attributable to birds being stressed while they were held in the metabolic chamber or wearing a mask. Thus, previous measurements of metabolic rate under basal conditions or for incubating wandering albatrosses are likely to be overestimates. Combining the relationship between HR and metabolic rate for both sexes, we estimate that wandering albatrosses expend 147 kJ kg–1 day–1 to incubate their eggs. In addition, the cost of incubation was assumed to vary because (i) HR was higher during the day than at night, and (ii) there was an effect of wind chill (\u3c0°C) on basal HR. The presence of humans in the vicinity of the nest or after a band control was shown to increase HR for extended periods (2–3 h), suggesting that energy expenditure was increased as a result of the disturbance. Lastly, males and females reacted differently to handling in terms of HR response: males reacted more strongly than females before handling, whereas females took longer to recover after being handled
    • …
    corecore